首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4021篇
  免费   593篇
  国内免费   642篇
化学   3247篇
晶体学   51篇
力学   184篇
综合类   89篇
数学   469篇
物理学   1216篇
  2024年   6篇
  2023年   71篇
  2022年   104篇
  2021年   128篇
  2020年   153篇
  2019年   204篇
  2018年   137篇
  2017年   156篇
  2016年   227篇
  2015年   187篇
  2014年   233篇
  2013年   277篇
  2012年   342篇
  2011年   364篇
  2010年   272篇
  2009年   250篇
  2008年   282篇
  2007年   268篇
  2006年   240篇
  2005年   210篇
  2004年   176篇
  2003年   132篇
  2002年   150篇
  2001年   129篇
  2000年   92篇
  1999年   78篇
  1998年   52篇
  1997年   49篇
  1996年   54篇
  1995年   49篇
  1994年   37篇
  1993年   20篇
  1992年   14篇
  1991年   26篇
  1990年   14篇
  1989年   20篇
  1988年   8篇
  1987年   9篇
  1986年   9篇
  1985年   8篇
  1983年   6篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1975年   3篇
  1961年   1篇
  1957年   1篇
  1936年   1篇
排序方式: 共有5256条查询结果,搜索用时 15 毫秒
101.
102.
103.
104.
Development of suitable supports has been proven as an important preparation process for high active catalysts of fuel cell. In this work, a carbon material was prepared by pyrolyzing cocoons with ferric chloride as activator, and then Pt nanoparticles (ca. 50 wt.%) were deposited on its surface. The characteristics of X-ray diffraction and transmission electron microscopy showed that the face-centered cubic structured Pt nanoparticles with nano-sized crystals interconnected each other via grain boundaries were formed on the surface of pyrolyzed cocoons. Afterwards, electrochemical results demonstrate that the nanostructured Pt supported on this support exhibits higher catalytic activity and CO tolerance than Pt nanoparticles supported on Vulcan carbon for methanol oxidation reaction.  相似文献   
105.
Selective chemical modification of proteins plays a pivotal role for the rational design of enzymes with novel and specific functionalities. In this study, a strategic combination of genetic and chemical engineering paves the way for systematic construction of biocatalysts by tuning the product spectrum of a levansucrase from Bacillus megaterium (Bm-LS), which typically produces small levan-like oligosaccharides. The implementation of site-directed mutagenesis followed by a tyrosine-specific modification enabled control of the product synthesis: depending on the position, the modification provoked either enrichment of short oligosaccharides (up to 800 % in some cases) or triggered the formation of high molecular weight polymer. The chemical modification can recover polymerization ability in variants with defective oligosaccharide binding motifs. Molecular dynamic (MD) simulations provided insights into the effect of modifying non-native tyrosine residues on product specificity.  相似文献   
106.
Recent advances in photocatalysis focus on the development of materials with hierarchical structure and on the surface plasmon resonance (SPR) phenomenon exhibited by metal nanoparticles (NPs). In this work, both are combined in a material where size‐controllable Ag‐NPs are uniformly loaded onto the hierarchical microporous and mesoporous and nanocolumnar structures of ZnO, resulting in Ag‐NP/ZnO nanocomposites. The embedded Ag‐NPs slightly decrease the hydrophobicity of fibrous ZnO, improve its wettability, and increase the absorption of formaldehyde (H2CO) onto the photocatalyst, all of this resulting in excellent photodegradation of formaldehyde in aqueous solution. Besides, we found that Ag‐NPs with optimal size not only accelerate the charge transfer to the surface of ZnO, but also strengthen the SPR effect in the intercolumnar channels of fibrous ZnO particles combining with high concentration of photo‐generated radical species. The micro‐to‐mesoporous ZnO is like a nanoarray packed Ag‐NPs. With Ag‐NPs of diameter 2.5 < ? < 6.5 nm, ZnO exhibits the most superior photodegradation rate constant value of 0.0239 min?1 with total formaldehyde removal of 97%. This work presents a new feasible approach involving highly sophisticated Ag‐NP/ZnO architecture combining the SPR effect and hierarchically ordered structures, which results in high photocatalytic activity for formaldehyde photodegradation.  相似文献   
107.
Dexmedetomidine is an important sedative agent administered as premedication to achieve procedural sedation in children. To describe the correlation between the genetic state and the concentration of dexmedetomidine, it is necessary to develop a specific, time‐saving and economical method for detection of dexmedetomidine in plasma samples. In this work, an ultra‐high‐performance liquid chromatography (UHPLC)–tandem mass spectrometry method has been established and validated for detection of dexmedetomidine in plasma from pediatric population. After a simple liquid–liquid extraction with an organic solution, the analytes were separated on an ACQUITY BEH C18 column (2.1 mm × 50 mm, 1.7 μm particle size) by gradient elution with the mobile phase of acetonitrile and 1‰ aqueous formic acid (flow rate 0.3 mL min?1). Mass spectrometry measurements were performed under the positive selected reaction monitoring and the mass transitions monitored were m/z 201.3 → 95.1, 204.2 → 98.0 for dexmedetomidine and deuterated medetomidine (internal standard), respectively. Validation of the method based on China Food and Drug Administration guidelines showed acceptable selectivity. The UHPLC method employed a stable isotope‐labeled internal standard, showed good specificity and was successfully used to detect dexmedetomidine in plasma samples from 260 pediatric patients. A subsequent application of this method to a pharmacogenetic study was also described. Importantly, this is the first study to report the correlation between CYP2A6 rs835309 activity and concentration of dexmedetomidine.  相似文献   
108.
Precise revealing the mechanisms of excited-state intermolecular proton transfer (ESPT) and the corresponding geometrical relaxation upon photoexcitation and photoionization remains a formidable challenge. In this work, the compound (E)-4-(((4H-1,2,4-triazol-4-yl)imino)methyl)-2,6-dimethoxyphenol (TIMDP) adopting a D-π-A molecular architecture featuring a significant intramolecular charge transfer (ICT) effect has been designed. With the presence of perchloric acid (35 %), TIMDP can be dissolved through the formation of a HClO4–H2O–OH(TIMDP)–N(TIMDP) hydrogen-bonding bridge. At the ground state, the ICT effect is dominant, giving birth to crystals of TIMDP. Upon external stimuli (e.g., UV light irradiation, electro field), the excited state is achieved, which weakens the ICT effect, and significantly promotes the ESPT effect along the hydrogen-bonding bridge, resulting in crystals of [HTIMDP]+ ⋅ [H2O] ⋅ [ClO4]. As a consequence, the mechanisms of the ESPT can be investigated, which distorted the D-π-A molecular architecture, tuned the emission color with the largest Stokes shift of 242 nm, and finally, high photoluminescence quantum yields (12 %) and long fluorescence lifetimes (8.6 μs) have achieved. These results not only provide new insight into ESPT mechanisms, but also open a new avenue for the design of efficient ESPT emitters.  相似文献   
109.
An amazing phenomenon of the relative magnitude of modulus of two liquid-crystal (LC) gels is found inverted under/above their phase transition temperature TLC-iso, which is further proved to be caused by their diverse morphology flexibility. By testing the polarity of two LCs, gelator POSS-G1-Boc (POSS=polyhedral oligomeric silsesquioxane) was discovered to self-assemble into more flexible structures in a relatively low polar LC, whereas more rigid ones are formed in higher polar LC. Hence, a fitting function to connect morphology flexibility with solvent polarity was established, which can even be generalized to a number of common solvents. Experimental observations and coarse-grained molecular dynamics simulations revealed that solvent polarity mirrors a “Morse code”, with each “code” corresponding to a specific morphology flexibility.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号